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Neuro 101

* The brain is made of nheurones

Figure 1. Santiago Ramén y Cajal, The pyramidal neuron of the
cerebral cortex, 1904 Ink and pencil on paper, 8 5/8 x 6 7/8 in.

Figure 2 (next). Networks of neurones and dendritic arborisations. Credit:
https://commons.wikimedia.org/wiki/File:Culture_of_rat_brain_cells_stained_with_antibody to_
MAP2_(green), Neurofilament_(red) and_DNA_(blue).jpg
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Figure 3. Abstract representation of neural synapse.



Figure 4. Axon - dendritic synapse of two neurones.
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Figure 4. Axon - dendritic synapse of two neurones.
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Figure 5. Firing pyramidal cell exhibiting axon - dendritic
synaptic communication.



Neural synapses: Hebbian learning

* “When an axon of cell A is near enough to
excite a cell B... A’s efficiency, as one of the
cells firing B, is increased,” Hebb, 1949.

Hebbian learning:

sWhen two joining cells fire
simuitaneously, the connection
between them strengthens (Hebb,
1949)

sDiscovered at a biomolecular level
by Lomo (1966) (Long-term
potentiation).

 Cells that fire together wire together

e Cells that communicate often become
‘stronger,” those that don’t weaken

Learned assocations through the
strengthening of connections....

Figure 6. Hebbian synaptic adjustment. Credit:
https://www.datasciencecentral.com/profiles/
blogs/learning-rules-in-neural-network



Neural synapses: Hebbian learning

[

y(X) = in'Wi

1=1

Output y depends on... sum of all inputs * all weights
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Figure 7. Directed connections between neurones - 2
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Neural synapses: Hebbian learning

* How do we decide to increase weight?

/
How much do we like the
response, and how often

do we use it?

Figure 8. Neural activation pathway representing a
learned response to a stimulus.
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Figure 9. Long - term potentiation. Credit: https://qbi.ug.edu.au/brain-
basics/brain/brain-physiology/long-term-synaptic-plasticity



Neural networks

e What is an artificial neural network?

o

Figure 10. Schematic diagramme of an
artificial neural network, perceptron model.



Neural networks z

Figure 10. Schematic diagramme of an
artificial neural network, perceptron model.



Neural networks: Hebbian learning

* Neural networks also adjust their weights to learn something
* Plays an essential role in training an algorithm

* lteratively find a weight vector w for which learning is most accurate



Optimal Unsupervised Learning in a Single-Layer Linear
Feedforward Neural Network

TERENCE D. SANGER

Massachusetts Institute of Technology
(Received 31 October 1988; revised and accepted 26 April 1989)

Abstract—A new approach to unsupervised learning in a single-laver linear feedforward neural nerwork is
discussed. An optimality principle is proposed which is based upon preserving maximal information in the output
units. An algorithm for unsupervised learning based upon a Hebbian learning rule, which achieves the desired
optimality is presented. The algorithm finds the eigenvectors of the input correlation matrix. and it is proven to
converge with probability one. An implementation which can train neural networks using only local ““synaptic”
modification rules is described. It is shown that the algorithm is closely related ro algorithms in statistics ( Factor
Analysis and Principal Components Analysis) and neural networks ( Self-supervised Backpropagation. or the
“encoder’” problem). It thus provides an explanation of certain neural network behavior in terms of classical
statistical techniques. Examples of the use of a linear network for solving image coding and texture segmentation
problems are presented. Also, it is shown that the algorithm can be used to find “visual receptive fields” which
are qualitatively similar to those found in primate retina and visual cortex.

Sanger’s rule for Hebbian adjustment —
the Generalised Hebbian Algorithm



Neural synapses: Hebbian learning

* How do we decide on a weight?

/ \
How much do we like the

response, and how often
do we use it?

Figure 8. Neural activation pathway representing a
learned response to a stimulus.



Energetics

* The study of energy at multiple scales and in different states
* Includes thermodynamics (statistical mechanics) and biochemistry

* Foundation of the physical world



Thermodynamics, statistics, and chemistry:
Helmholtz free energy

* Helmholtz drew an equivalence between entropy and a concept
called surprise, or free energy

* Distinct from free energy in the brain but shares a number of
similarities

* |f the brain system is at equilibrium then internal states minimise
Helmholtz free energy

* Helmholtz also studied perception, but never united ideas due to
differences in application



Thermodynamics, statistics, and the brain:
Friston free energy

Karl Friston unites the study
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Figure 11. Free energy schematic demonstrating the
calculation of free energy in the brain. Credit: Karl
Friston - 2016 CCN Workshop: Predictive Coding



Bugmaster says.

March 4, 2018 at 11:17 pm

What is

Ok, in this case, I hereby propose a framework that human brains are actually
operated by an intricate society of invisible gremlins (see Bugmaster et al,

GOD HELP US, I 2018); naturally, the gremlins themselves are only quasi-physical, existing as a VERGY
mixture of mathematical constructs and quantum energy states. Is my

POSTED ON MARCH 4 framework better, or worse, than Friston’s ? Remember, you can't use evidence
L0) Research Digest
5 PET and fMRI

and facts and such to justify your answer, since the principle of falsification does

We had a guest lect not apply to frameworks.
resedrfiers, SIS i (VELAs O, WL well Quer Lo mmiinon e ivieri yi"(l”[b" bEnUEEﬂ 'I'.IS, ﬂnd we
(notes here). | also spent the next few

This is clearly nuts. When I decide to reach out for the pizza, I don't assign high views Neuroscience paper — for an hour and a half.

probability to states in which I'm already eating the slice. It is precisely my knowledge " ULl e statisticians, fwo physicists, a

- r _ physical chemist, a nuclear physicist, and a large group of neuroimagers — but apparently we
The wikipedia page doesn't explain much but

ol LUERNL Gigia o) d I met with a Princeton physicist, a Stanford neurophysiologist, a Cold

Can you please link me to more Springs Harbor neurobiologist to discuss the paper. Again blanks, one and all.

A snrji on Nov iDr 2018 [_] 12 LIS WWRARIILES 2100010y Gl LIS W ak =2

By no means will I be ever able to grasp Friston's theory, but?MNs. (For example: In the toy model of the St.
Petersburg problem, the utility function grows exactly as fast as the probability function shrinks,

resulting in infinite expected utility for playing the game.)



Action and perception |edit]

The objective is to maximise model evidence p(s | m) or minimise surprise

— logp(s \ m) This generally involves an intractable marginalisation over hidden states, so surprise is replaced with an upper variational free energy bound.!’!

However, this means that internal states must also minimise free energy, because free energy is a function of sensory and internal states:

a(t) = argmin{ F(s(t), u(t))}

u(t) = argmin{ F(s(¢), 1))}

I

F(s,pu) = Eq[—logp(s,v | m)] — H[g(v) | p)] = —logp(s | m) + Dxrlg(¢ | p) || p(¢ | s,m)] > —logp(s | m)
—— - ' o b ' d ~ ' 4 \' e d ~ ' d
free—energy energy entropy surprise divergence surprise

This induces a dual minimisation with respect to action and internal states that correspond to action and perception respectively.

Free energy minimisation [edit]

Free energy minimisation and self-organisation [edit]

Free energy minimisation has been proposed as a hallmark of self-organising systems when cast as random dynamical systems.“e‘] This formulation rests on a

Markov blanket (comprising action and sensory states) that separates internal and external states. If internal states and action minimise free energy, then they
place an upper bound on the entropy of sensory states

T T
lim — [ F(s(t), u(t)) dt > lim — f logp(s(t) | m) dt = H[p(s | m)]
T—ro0 T 0 T—eo T 0 . " i
~ - ~~ d surprise
ree-action




Thermodynamics, statistics, and chemistry:
Friston free energy

* Why minimise free energy as a measure of model correctness?
* More free energy means more entropy

* Entropy is not good, because the brain tries to stay ordered, and have
as little false information as possible



* “It turns out that the problems of inferring the causes of sensory

input (perceptual inference) and learning the relationship between

input and cause (perceptual learning) can be resolved using exactly

the same principle. Specifically, both inference and learning rest on
minimizing the brain’s free energy, as defined in statistical physics.”

Friston, 2005



Bayesian statistics for model building (applied
to the brain)

Percent : P(M‘O) :ML IP(IW)] Eq. 4

chance that

our internal | P(O) I
model is
still correct
in light of
new
observation
Internal
model New

observation



So what is free energy, really?

* “Predictive coding” under free energy is a model for perception and
learning

* Physical, neuronal representations of reality must change to minimise
error

* Hebbian synapses are thus subject to free energy



Error minimisation

* Error minimisation at the synapse level, unlike the more global nature
of ‘psychological’ learning

[

y(X) = 2 Xi W
S TN

Already exists, proportionally to
cannot change reflect changeiny

Changes
explicitly



Hebbian free energy: a simplified derivation

* Create a model of the world around you, based on relevant prior
experiences

* Model is characterised by actual data v, observation u, expected data
vy, function g(v) for mapping, sensory noise X,,, and expected noise

2p

* Based on your observation u and your past experience you will try to
estimate the true data, Vp and 2y



Hebbian free energy: a simplified derivation

Phi, characterises

(new) prior — —_—
model _ ¢ vp a5
/ p
Error terms
—_— g.
gu —



Hebbian free energy: a simplified derivation

b — v, 2 2
gp — Z Multiplicative

weighting

“u > g(®)

Input
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Figure 12. Schematic diagramme of a
Hebbian free energy architecture. Includes
neural states and weights, or activity and
connec tions.



Hebbian free energy: a simplified derivation
Av, = &, Eq. 7 2y ZP

Multiplicative
weighting

1 2 -1
AZP = E (Ep — Zp Eq. 8

g(P)

1 :
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Figure 12. Schematic diagramme of a
Hebbian free energy architecture. Includes
neural states and weights, or activity and
connec tions.



Hebbian free energy: we’re finally done

At Columbia’s psychiatry department, I recently led a journal club for 15 PET and fMRI

researhers, PhDs and MDs all, with well over $10 million in NIH grants betiveen us, and we
tried to understand Friston's 2010 Nature Reviews Neuroscience paper — for an hour and a half.

There was a lot of mathematical knowledge in the room: three statisticians, tiwo physicists, a

physical chemist, a nuclear physicist, and a large group of neuroimagers — but apparently we

didn't have what it took. I met with a Princeton physicist, a Stanford neurophysiologist, a Cold

Springs Harbor neurobiologist to discuss the paper. Again blanks, one and all.

Peter Freed (2010) Research Digest



Hebb and efficient algorithm training
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Figure 13. Training a neural network through an
error minimisation, or comparative, method.



Training and Bayesian algorithm learning

fX)=>Y:P(f(x)|(x,y)) =1 Ea10

J

\ N
Y

f(x) must map given
inputs in all previous
training data to given
outputs

\

f(x) must also represent any new
data set, or give an output for all
possible inputs from similar
distributions



Integrating Hebb, Friston, and Samuel

* Besides explicitly coding Friston’s architectures, some rules already
approximate this



Hebb and brain - like error minimisation

win + 1| = w[n| + Aw Eq. 3

Delta rule

\AWij = x; -1 (v — f(x);) Bq. 11

fX) Ay ~P(f(x) | (x,y)) <1,
Af(x) 1y = fx) = 0



/ooming out

* The link between learning in the brain and learning in ML is statistical
inference

* Cells and nodes are uniquely capable of computing on data by using
inputs and outputs to calibrate themselves

* Synaptic operations and error minimisation give the human brain
learning ability, and form the same substrates of learning and
inference in machine learning algorithms. m



For the future

* What other characteristics of the brain can we use to improve ML
performance?

* How can inquiry into ML continue to be driven by neuroscience?

* Can neuroscience ever lead to more complex systems?
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