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Neuro 101

• The brain is made of neurones

Figure 1. Santiago Ramón y Cajal, The pyramidal neuron of the 
cerebral cortex, 1904 Ink and pencil on paper, 8 5/8 x 6 7/8 in.

Figure 2 (next). Networks of neurones and dendritic arborisations. Credit: 
https://commons.wikimedia.org/wiki/File:Culture_of_rat_brain_cells_stained_with_antibody_to_
MAP2_(green),_Neurofilament_(red)_and_DNA_(blue).jpg
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Figure 4. Axon - dendritic synapse of two neurones. 



Figure 4. Axon - dendritic synapse of two neurones. 
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Figure 5. Firing pyramidal cell exhibiting axon - dendritic 
synaptic communication.
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• “When an axon of cell A is near enough to 
excite a cell B… A’s efficiency, as one of the 
cells firing B, is increased,” Hebb, 1949.

• Cells that fire together wire together

• Cells that communicate often become 
‘stronger,’ those that don’t weaken

Figure 6. Hebbian synaptic adjustment. Credit: 
https://www.datasciencecentral.com/profiles/
blogs/learning-rules-in-neural-network 

Neural synapses: Hebbian learning



Neural synapses: Hebbian learning

𝑦 𝐱 = ෍

𝑖=1

𝑙

𝑥𝑖 ∙ 𝑤𝑖 Eq. 1

Output y depends on… sum of all inputs * all weights 



Neural synapses: Hebbian learning 

𝑤 𝑛 + 1 = 𝑤 𝑛 + ∆𝑤

𝑤𝑖𝑗 𝑛 + 1 = 𝑤𝑖𝑗 + 𝜂(𝑥𝑖 − 𝑤𝑖𝑗 ∙ 𝑦𝑗)

Eq. 2

Eq. 3
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Figure 7. Directed connections between neurones 
x and y, sets indexed by i and j, respectively

Weight change: 
Oja’s rule

Next 
weight

j = 0

j = 1

i = 0

i = 1

i = 2



Neural synapses: Hebbian learning

• How do we decide to increase weight? 
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B

Figure 8. Neural activation pathway representing a 
learned response to a stimulus. 
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Figure 9. Long - term potentiation. Credit: https://qbi.uq.edu.au/brain-
basics/brain/brain-physiology/long-term-synaptic-plasticity



Neural networks

• What is an artificial neural network?
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Figure 10. Schematic diagramme of an 
artificial neural network, perceptron model. 



Neural networks
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Figure 10. Schematic diagramme of an 
artificial neural network, perceptron model. 
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Neural networks: Hebbian learning

• Neural networks also adjust their weights to learn something

• Plays an essential role in training an algorithm 

• Iteratively find a weight vector 𝐰 for which learning is most accurate



Sanger’s rule for Hebbian adjustment –
the Generalised Hebbian Algorithm



Neural synapses: Hebbian learning

• How do we decide on a weight?

A

B

Figure 8. Neural activation pathway representing a 
learned response to a stimulus. 
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do we use it?



Energetics 

• The study of energy at multiple scales and in different states

• Includes thermodynamics (statistical mechanics) and biochemistry 

• Foundation of the physical world



Thermodynamics, statistics, and chemistry: 
Helmholtz free energy
• Helmholtz drew an equivalence between entropy and a concept 

called surprise, or free energy

• Distinct from free energy in the brain but shares a number of 
similarities

• If the brain system is at equilibrium then internal states minimise
Helmholtz free energy

• Helmholtz also studied perception, but never united ideas due to 
differences in application



Thermodynamics, statistics, and the brain: 
Friston free energy

Figure 11. Free energy schematic demonstrating the 
calculation of free energy in the brain. Credit: Karl 
Friston - 2016 CCN Workshop: Predictive Coding

Karl Friston unites the study 
of energy with information 
perception in 2006, applying 
physics and statistics to 
psychology



What is free energy? 

Peter Freed (2010) Research Digest





Thermodynamics, statistics, and chemistry: 
Friston free energy
• Why minimise free energy as a measure of model correctness?

• More free energy means more entropy 

• Entropy is not good, because the brain tries to stay ordered, and have 
as little false information as possible



• “It turns out that the problems of inferring the causes of sensory 

input (perceptual inference) and learning the relationship between 

input and cause (perceptual learning) can be resolved using exactly 

the same principle. Specifically, both inference and learning rest on 

minimizing the brain’s free energy, as defined in statistical physics.”

Friston, 2005



Bayesian statistics for model building (applied 
to the brain)

𝑃 𝑀 𝑂 =
𝑃 𝑂 𝑀 ∙ 𝑃(𝑀)

𝑃(𝑂)

Internal 
model New 

observation

Percent 
chance that 
our internal 
model is 
still correct 
in light of 
new 
observation

Eq. 4



So what is free energy, really?

• “Predictive coding” under free energy is a model for perception and 
learning

• Physical, neuronal representations of reality must change to minimise 
error

• Hebbian synapses are thus subject to free energy



Error minimisation

• Error minimisation at the synapse level, unlike the more global nature 
of ‘psychological’ learning

𝑦 𝐱 = ෍

𝑖=1

𝑙

𝑥𝑖 ∙ 𝑤𝑖

Changes 
proportionally to 
reflect change in y

Changes 
explicitly 

Already exists, 
cannot change



Hebbian free energy: a simplified derivation

• Create a model of the world around you, based on relevant prior 
experiences

• Model is characterised by actual data 𝑣, observation 𝑢, expected data 
𝑣𝑝, function 𝑔(𝑣) for mapping, sensory noise Σ𝑢, and expected noise 
Σ𝑝

• Based on your observation 𝑢 and your past experience you will try to 
estimate the true data, 𝑣𝑝 and Σ𝑝



Hebbian free energy: a simplified derivation

𝜀𝑝 =
𝜙 − 𝑣𝑝

Σ𝑝

𝜀𝑢 =
𝑢 − 𝑔(𝜙)

Σ𝑢

Eq. 5

Phi, characterises 
(new) prior 
model

Eq. 6

Error terms



Hebbian free energy: a simplified derivation
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Figure 12. Schematic diagramme of a 
Hebbian free energy architecture. Includes 
neural states and weights, or activity and 
connections.



Hebbian free energy: a simplified derivation
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Figure 12. Schematic diagramme of a 
Hebbian free energy architecture. Includes 
neural states and weights, or activity and 
connections.
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Hebbian free energy: we’re finally done

Peter Freed (2010) Research Digest



Hebb and efficient algorithm training
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Training and Bayesian algorithm learning

𝑓 𝑋 → 𝑌 ∶ 𝑃 𝑓 𝑥 (𝑥, 𝑦) ≈ 1 Eq. 10

f(x) must also represent any new 
data set, or give an output for all 
possible inputs from similar 
distributions

f(x) must map given 
inputs in all previous 
training data to given 
outputs



Integrating Hebb, Friston, and Samuel 

• Besides explicitly coding Friston’s architectures, some rules already 
approximate this



Hebb and brain - like error minimisation

𝑤 𝑛 + 1 = 𝑤 𝑛 + ∆𝑤

Δ𝑤𝑖𝑗 = 𝑥𝑖 ∙ 𝜂 ∙ (𝑦𝑗 − 𝑓 𝑥𝑖 𝑗)

Eq. 3

Eq. 11

∴ 𝑃 𝑓 𝑥 (𝑥, 𝑦) ≪ 1,𝑓 𝑥 ⊣ 𝑦

∆𝑓 𝑥 ∶ 𝑦 − 𝑓 𝑥 ≈ 0

Delta rule



Zooming out

• The link between learning in the brain and learning in ML is statistical 
inference

• Cells and nodes are uniquely capable of computing on data by using 
inputs and outputs to calibrate themselves

• Synaptic operations and error minimisation give the human brain 
learning ability, and form the same substrates of learning and 
inference in machine learning algorithms.∎



For the future 

• What other characteristics of the brain can we use to improve ML 
performance?

• How can inquiry into ML continue to be driven by neuroscience?

• Can neuroscience ever lead to more complex systems?
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